Increasing age influences uterine integrity, but not ovarian function or oocyte quality in the cheetah (Acinonyx jubatus)

  • May 12, 2011
  • by A.E Crosier, P. Comizzoli, T. Baker, A. Davidson, L. Munson, J. Howard, Marker L. L., D.E. Wildt


Although the cheetah (Acinonyx jubatus) routinely lives for more than 12 yr in ex situ collections, females older than 8 yr reproduce infrequently. We tested the hypothesis that reproduction is compromised in older female cheetahs due to a combination of disrupted gonadal, oocyte, and uterine function/integrity. Specifically, we assessed 1) ovarian response to gonadotropins; 2) oocyte meiotic, fertilization, and developmental competence; and 3) uterine morphology in three age classes of cheetahs (young, 2-5 yr, n = 17; prime, 6-8 yr, n = 8; older, 9-15 yr, n = 9). Ovarian activity was stimulated with a combination of equine chorionic gonadotropin and human chorionic gonadotropin (hCG), and fecal samples were collected for 45 days before gonadotropin treatment and for 30 days after oocyte recovery by laparoscopy. Twenty-six to thirty hours post-hCG, uterine morphology was examined by ultrasound, ovarian follicular size determined by laparoscopy, and aspirated oocytes assessed for nuclear status or inseminated in vitro. Although no influence of age on fecal hormone concentrations or gross uterine morphology was found (P > 0.05), older females produced fewer (P < 0.05) total antral follicles and oocytes compared to younger counterparts. Regardless of donor age, oocytes had equivalent (P > 0.05) nuclear status and ability to reach metaphase II and fertilize in vitro. A histological assessment of voucher specimens revealed an age-related influence on uterine tissue integrity, with more than 87% and more than 56% of older females experiencing endometrial hyperplasia and severe pathologies, respectively. Our collective findings reveal that lower reproductive success in older cheetahs appears to be minimally influenced by ovarian and gamete aging and subsequent dysfunction. Rather, ovaries from older females are responsive to gonadotropins, produce normative estradiol/progestogen concentrations, and develop follicles containing oocytes with the capacity to mature and be fertilized. A more likely cause of reduced fertility may be the high prevalence of uterine endometrial hyperplasia and related pathologies. The discovery that a significant proportion of oocytes from older females have developmental capacity in vitro suggests that in vitro fertilization and embryo transfer may be useful for “rescuing” the genome of older, nonreproductive cheetahs.

Share with friends