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Abstract 
 
Next-generation sequencing technologies offer new approaches for global measurements of gene 
expression, but are mostly limited to organisms for which a high-quality assembled reference 
genome sequence is available. We present a method for gene expression profiling called EDGE, 
or EcoP15I-tagged Digital Gene Expression, based on ultra high-throughput sequencing of 27 bp 
cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification 
of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of 
genes in the genome and achieves saturation after 6 – 8 million reads. EDGE exhibits very little 
technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited 
for quantification of transcript abundance in non-model organisms where a high quality 
annotated genome is not available. In a direct comparison with RNA-seq, both methods provide 
similar assessments of relative transcript abundance, but EDGE does better at detecting gene 
expression differences for poorly expressed genes, and does not exhibit transcript length bias. 
Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the 
melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in 
many different mammals, also causes reduced expression of genes involved in the interferon 
response. To illustrate the application of EDGE to a non-model organism, we examine skin 
biopsy samples from a cheetah (Acinonyx jubatus), and identify genes likely to control 
differences in the color of spot vs. non-spotted regions. 
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Introduction  
Recent and ongoing advances in DNA sequencing technology have created new opportunities for 
measuring gene expression based on “counting”, in which a cDNA population is heavily 
oversampled by massively parallel sequencing, and transcript abundance is inferred from the 
relative frequencies with which different cDNAs are identified. The most widely used approach, 
RNA-seq, utilizes randomly sheared RNA or cDNA in which sequence reads generated by an 
Illumina or SOLiD instrument that align to a reference genome are analyzed with regard to 
transcript identity and read position within the transcript; these observations are then used to 
make inferences about transcript abundance (Cloonan et al. 2008; Mortazavi et al. 2008; 
Nagalakshmi et al. 2008; Wilhelm et al. 2008). 

RNA-seq and related approaches (LQ-RNAseq and digital transcriptome profiling with NSR 
primers) are best suited to organisms for which a high-quality assembled and annotated genome 
is available (Armour et al. 2009; Ozsolak et al. 2010). Mapping short reads to incomplete 
genome sequences entails both reduced power (reads that fail to align) and false positive errors 
(reads that align uniquely to a partial genome sequence but arise from elsewhere). Furthermore, 
these approaches are especially challenging for natural populations with high levels of 
polymorphism. At the same time, sequencing-based approaches to assess gene expression are 
particularly appealing for non-model organisms with unique ecological, evolutionary, or 
developmental features. Cichlid fish, thirteen-lined ground squirrels, and songbirds are examples 
of animals for which there are significant biological questions that would benefit from 
transcriptome profiling but for which the respective research communities are insufficiently large 
to benefit from genomic resources associated with large economies of scale such as 
oligonucleotide microarrays (Liu et al. 2010; Renn et al. 2004; Replogle et al. 2008).  

Here, we report molecular biologic and informatic development of a short-read sequence 
approach that is particularly suited for measuring gene expression in non-model organisms: 
EDGE, or EcoP15I-tagged Digital Gene Expression. Each expressed transcript in the genome is 
identified by a unique 27 bp tag; thus, the number of potential tags in an experiment corresponds 
to the number of genes in the genome, yielding a library of much less complexity than random 
shearing, and which is less susceptible to amplification bias since every library molecule is 
exactly the same size. Consequently, the frequency at which a particular EDGE tag appears in a 
library serves as a proxy for quantifying and comparing transcript abundance. Importantly, the 
one-to-one correspondence between transcript and sequence tag allows gene expression 
differences to be measured by statistical analysis of relative tag frequencies, thus obviating the 
need to identify every sequence tag. Finally, tag to gene assignments can be accomplished 
effectively by leveraging a comparative genomics approach that relies on partially assembled 
transcriptomes.  

We first describe the development of EDGE, and its performance relative to RNA-seq, in 
laboratory mice segregating a loss-of-function mutation for the melanocortin 1 receptor (Mc1r) 
gene, which underlies a fundamental aspect of pigmentary variation in many vertebrate species 
(Andersson 2003; Eizirik et al. 2003; Mundy et al. 2003; Rees 2003). Using a conventional 
approach in which individual tags are first mapped to a reference genome, we detect validated 
gene expression differences over a 106 –fold dynamic range; we also identify a previously 
unappreciated component of MC1R signaling. We then apply the EDGE approach to a non-
model organism, the cheetah, to investigate the molecular basis of black spotting. Our results 
illustrate various strategies for making tag to gene assignments, and reveal gene expression 

 Cold Spring Harbor Laboratory Press on May 10, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


signatures that provide new biologic insight into pigment patterning in a non-model organism. 

Results 
Overview of molecular biology and informatics 

The EDGE approach starts with modest amounts of total RNA (1 – 2 micrograms) and utilizes 
paramagnetic oligo-dT beads for mRNA enrichment and to facilitate subsequent biomolecular 
handling steps (Figure 1A). Individual transcripts are directionally “tagged” according to a 27 bp 
sequence that begins with a four base pair restriction site, NlaIII, and the 23 bp that lie 
immediately downstream, generated by the type III restriction endonuclease, EcoP15I (Figure 
1A). Theoretically, each tag begins with the NlaIII site that lies closest to the poly(A) tail; in 
practice, we observe several-fold more tags than transcripts due to partial cleavage with NlaIII. 
We note that NlaIII sites are present in >99% of mouse or human cDNA sequences and that the 
application of EDGE to two types of mouse tissue captures ~90% of the >20,000 genes 
represented in RefSeq (described below in Fig. 3C). 

For organisms with high quality assembled and annotated genomes, individual pass-filter EDGE 
tags from a massively parallel sequencing instrument that uniquely align to a reference 
transcriptome are “translated” to gene counts, and quantitative analysis of gene expression 
profiles is carried out with a statistical model similar to SAM in which false discovery rates are 
estimated by permutation. For non-model organisms, tag-to-gene assignments are inferred using 
a comparative approach when there exists a closely related genome, and/or a stepwise approach 
using first-pass transcriptome data from 454 or paired-end Illumina reads that serves as a 
scaffold to link EDGE tags to genes (Figure 1B). 

EDGE in a model organism: technical characteristics 

We first applied EDGE to laboratory mice carrying a loss-of-function alteration in the MC1R, a 
G-protein coupled receptor mainly expressed in melanocytes. In this model, animals from the 
C57BL/6J strain exhibit a black coat color due to active MC1R signaling, whereas isogenic 
Mc1re/e mutants exhibit a yellow coat color (Robbins et al. 1993). Mc1r mutations are well 
recognized in a wide range of vertebrate species, including humans, where they cause red hair 
(Rees 2003) and have been proposed to underlie additional non-pigmentary phenotypes 
including increased susceptibility to skin cancer (Bastiaens et al. 2001; Kennedy et al. 2001) and 
altered sensitivity to general anesthesia (Liem et al. 2004; Mogil et al. 2005). 

Summary alignment and mapping statistics from 21 mouse EDGE libraries (10 from Mc1r+/+ and 
11 from Mc1re/e tissues) are presented in Table 1, and show that 87% of pass-filter sequence 
reads conform to expectation with a 26 – 28 bp read anchored at one end with the NlaIII 
recognition site. Of these, 86% could be aligned uniquely to the mouse transcriptome. This 
compares favorably with analogous results from two mouse skin RNA-seq libraries, in which 
60% of the 36 bp pass-filter reads aligned uniquely to the mouse transcriptome (Table 1). By 
contrast, MmeI, a Type IIs restriction endonuclease commonly used in tag-based cDNA 
sequencing protocols (Asmann et al. 2009; Wu et al. 2010), generates a 21 bp tag that results in a 
smaller proportion of uniquely mapped tags—78% of a simulated MmeI-tagged dataset mapped 
uniquely to the mouse transcriptome compared to 86% with EDGE—and that translates to 3% 
reduction in genes detected. Among the EDGE tags, 78% and 8% mapped uniquely to the sense 
and antisense strands of mouse transcripts respectively (Table 1), and 6% mapped to multiple 
genomic locations or to introns and unannotated regions of the genome (Table 1).  

 Cold Spring Harbor Laboratory Press on May 10, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


The enzymology of the EDGE methodology ensures that each transcript is sampled by 
sequencing a single 26 – 28 bp tag that is anchored by NlaIII restriction digest. In theory, the 
one-to-one correspondence between transcript and EDGE tag would enable us to measure 
relative transcript levels by comparing tag frequencies between libraries. However, since there 
could be multiple transcript isoforms per gene and since NlaIII digestion is not 100% efficient, 
each transcript can, in theory, be represented by multiple tags. In practice, we found that, on 
average, 82% of tags for each transcript arise from a single site, indicating that the relative 
frequencies of most tags provide an accurate measure of gene expression. Furthermore, >99% of 
genes that showed considerable expression levels in an alternative method (>1.5 RPKM by 
RNA-seq) were also detected by EDGE, indicating that the efficiency of NlaIII cleavage does 
not limit the ability of EDGE to assay for transcript abundance. 

To assess technical performance of the EDGE methodology, we examined correlations among 
libraries for both technical and biological replicates; we also compared both the general 
architecture of gene expression and specific biological findings obtained by EDGE to gene 
expression measurements obtained using alternative approaches. For this and subsequent work, 
we use the number of Tags per Million mapped exonic Reads (TPM) as primary data for 
comparison of different libraries and for subsequent statistical analyses.  

Pearson correlation coefficients of tag counts between libraries generated from the same pool of 
RNA or the same library sequenced at two different sites range from 0.927 to 0.992 with a mean 
of 0.975 (Figure S1). Correlations for biological replicates—tissues from age-matched isogenic 
animals—range from 0.869 to 0.992 with a mean of 0.955 (Figure S2). Thus, the EDGE protocol 
exhibits very little noise from library construction, amplification, and Illumina flow cell 
sequencing processes.  

Like other sequence-based assays, EDGE reveals a wide spectrum of gene expression, with mean 
tag counts ranging from 0.09 to 25,846 TPM. Also like other sequence-based assays for gene 
expression, the distribution of tag counts is highly skewed towards a large number of genes 
expressed at low levels (Figure 2A) (Asmann et al. 2009; Nagalakshmi et al. 2008). In the skin, 
many of the genes expressed at low levels are melanocyte-specific including Tyrp1 (28.2 TPM), 
Tyr (5.7 TPM), Mc1r (9.8 TPM), and Oca2 (0.9 TPM), which indicates that EDGE is capable of 
detecting biologically relevant gene expression from a minor cell type in a heterogeneous tissue 
(we estimate that melanocytes represent 0.1% - 1% of the cells in neonatal dermis). 

EDGE achieves near saturation in genes detected after 6 – 8 million tags (Figure S3A). 
Furthermore, saturation of moderately to very highly expressed genes (>2 TPM) occurs with ~3 
million exonic EDGE tags (Figure S3B). Thus, bar-coding strategies would allow multiple 
EDGE libraries to be sequenced efficiently and economically while still achieving robust 
measurements of the majority of the transcriptome. 

EDGE in a model organism: a role for the MC1R in the interferon response  

Using a Poisson log linear model to analyze gene counts from libraries of neonatal dermis—
selected originally because Mc1r is expressed mainly on melanocytes, and neonatal dermis is 
enriched for melanocytes relative to other skin compartments—we identified 72 genes that were 
downregulated and 255 genes that were upregulated in mutant (n = 6) compared to non-mutant 
(n = 5) tissue at an FDR of less than 5% (Figure 3A) (Witten et al. 2010). For eight differentially 
expressed genes chosen to represent a broad range of expression levels, quantitative RT-PCR 
confirmed the EDGE results for seven genes (Figure 2B and Table 2); the eighth gene, Rfng, was 
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downregulated 2.8-fold as determined by EDGE (145.1 TPM in Mc1r+/+ vs. 51.3 TPM in Mc1re/e 

samples), but quantitative RT-PCR failed to detect a difference. 

Several genes downregulated in mutant skin are expressed at very low to moderate levels, 
including Tyrp1 (56.2 TPM in Mc1r+/+ vs. 4.8 TPM in Mc1re/e skin), Brca2 (2.7 TPM in Mc1r+/+ 
vs. 1.4 TPM in Mc1re/e skin), and Smug1 (10.1 TPM in Mc1r+/+ vs. 4.1 TPM in Mc1re/e skin). 
Tyrp1, Dct, and Pmel encode melanogenic genes and are well-known targets of Mc1r based on 
studies of cultured melanocytes (Kobayashi et al. 1995; Lamoreux et al. 1995), but an effect of 
Mc1r on Brca2 and Smug1 has not been described previously, and may contribute to differences 
in skin cancer susceptibility. We also note that Slc7a11, which encodes a melanocyte-specific 
cystine transporter that is essential for pheomelanin (yellow pigment) synthesis (and in which a 
loss-of-function is responsible for the subtle gray coat color mutation), is upregulated (19.2 TPM 
in Mc1r+/+ vs. 44.5 TPM in Mc1re/e skin), which supports a hypothesis based on biochemical 
studies that cystine transport plays an instructive role in pigment-type switching (Chintala et al. 
2005; Simon et al. 2009). 

We carried out an unsupervised gene ontology analysis on the 327 differentially expressed genes 
and identified a number of unexpected biological processes affected by the Mc1r mutation 
(Table S1). These functional categories are represented mostly by genes that are upregulated in 
mutant skin except in one intriguing case, where genes downregulated in mutant skin represent a 
functional classification category called “response to interferon-gamma” (Table S1). Several of 
these genes, such as Oas2 and its family members Oasl1 and Oasl2, encode 2’-5’ oligoadenylate 
synthetases that play a direct role in anti-viral pathways (Baglioni et al. 1978; Hovanessian and 
Wood 1980; Perelygin et al. 2002). Others, such as Iigp1 and Gm12250, are involved in 
resistance to pathogens/viruses (Table S2) (Bernstein-Hanley et al. 2006; Miyairi et al. 2007; 
Uthaiah et al. 2003; Zerrahn et al. 2002). Notably, most of these genes are expressed at low 
levels in skin—the eight anti-viral genes are expressed 17.9 times lower (3.4 vs. 60.9 TPM) than 
the other 64 genes that were downregulated in mutant skin—which probably explains why they 
were missed by previous studies that utilized microarrays (April and Barsh 2006; Le Pape et al. 
2009).  

To further investigate a possible role of MC1R signaling in interferon-mediated immunity, we 
constructed and analyzed EDGE libraries from spleen obtained from five Mc1r+/+ and five 
Mc1re/e adult animals. Surprisingly, a large number of genes were differentially expressed in 
adult spleen. 945 genes were differentially expressed at an FDR of < 0.1% (Figure 3B). 
Consistent with the functional signature from neonate dermis, genes involved in interferon-
mediated immunity were also downregulated in the adult mutant tissues (Tables S1 and S3). 

Because EDGE detects transcripts expressed at extremely low levels, a large fraction of the 
transcriptome is sampled from a single tissue. For neonatal dermis and adult spleen, EDGE tags 
were detected in at least one tissue for 17,535 unique mouse genes; only 9% of the genes were 
limited to a single tissue (Figure 3C). 

Direct comparison with RNA-seq  

We randomly selected an Mc1r+/+ and an Mc1re/e neonatal dermis RNA sample from which 
EDGE libraries had already been made, then constructed and sequenced conventional RNA-seq 
libraries from the same RNA samples, generating between 10 and 16 million reads per library. 
Summary statistics for the fraction of reads that aligned uniquely to the transcriptome and for the 
number of genes detected were all similar to that of EDGE (Table 1).  
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Estimates of transcript abundance from EDGE TPM values are correlated with those from RNA-
seq values (based on reads per kilobase of exon model per million mapped reads, RKPM), as 
shown in Figure S4. However the extent of correlation, with Spearman coefficients of 0.82 and 
0.81 for the Mc1r+/+ and Mc1re/e samples (Figure S4), respectively, is considerably less than 
observed for technical replicates by EDGE (mean 0.975, Figure S1). Reduced correlation is most 
evident for genes expressed at lower levels, and is symmetric; in other words, ~20% of genes 
(~1,000 genes) that are poorly expressed (<1.5 RPKM by RNA-seq, or <2 TPM by EDGE) 
according to one platform are captured at moderate to high levels of expression by the reciprocal 
platform (Figure S4). In the case of the eight differentially expressed genes previously chosen for 
validation (and with the caveat that no biological replicates were generated in the case of RNA-
seq), six displayed differences in RPKM values that were concordant with the EDGE and qRT-
PCR results (Table 2). 

Next, we explored the sensitivity and precision of EDGE and RNA-seq as a function of 
sequencing depth by random sub-sampling of sequence reads. Saturation of gene detection for 
moderately to very highly expressed genes (>2 TPM or >1.5 RPKM) occurs at ~1 million exonic 
reads, whereas the detection of poorly expressed genes steadily increases up to ~7 million exonic 
reads (Figure S3A). Furthermore, RPKM or TPM values for 80% of genes fall within 20% of the 
value in the total dataset at ~5 million and ~6 million exonic reads for RNA-seq and EDGE, 
respectively (Figure S3B). Thus, both methods perform similarly across a broad range of 
expression levels. 

For genes that were differentially detected by either method, several observations suggest that 
the underlying explanation appears to be transcript length bias and the frequency of NlaIII sites. 
Because RNA-seq reads are randomly distributed and EDGE relies on the availability of NlaIII 
sites to generate tags, we expect the sensitivity of RPKM-based and TPM-based estimates to be 
inversely correlated with transcript length and the frequency of NlaIII sites respectively. Indeed, 
in our direct comparison datasets—with the caveat that RNA-seq does not discriminate between 
sense or antisense reads—the mean length of the 436 genes detected only by EDGE is 548 bp 
shorter than the 1,295 genes detected only by RNA-seq (p < 1e-8) (Figure S5A). On the other 
hand, genes that were only detected by EDGE and genes that were only detected by RNA-seq 
have 5.4 and 4.6 NlaIII sites per kilobase of transcript, respectively (p < 1e-6). (Figure S5B). 

To further explore potential bias in the entire dataset, we examined the relationship between the 
relative number of RNA-seq reads or EDGE tags per gene as a function of transcript length and 
the frequency of NlaIII sites. Not surprisingly, compared to EDGE, RNA-seq exhibits a strong 
bias towards detecting reads from longer transcripts (p < 1e-4) (Figure 4A). In contrast, the 
relative rate of RNA-seq reads and EDGE tags does not depend on the frequency of NlaIII sites 
within transcripts (p = 0.51), implying that EDGE is capable of providing robust measurements 
for transcript abundance using tags from one or a few NlaIII sites in each transcript (Figure 4B). 
As a consequence of transcript length bias caused by random sampling, statistical power for 
detecting differentially expressed genes by RNA-seq has been found to depend on transcript 
length (Oshlack and Wakefield 2009). Conversely, among the 21 EDGE libraries from mouse 
tissue, our ability to detect differentially expressed genes is independent of transcript length 
(Figure 4C). 

To assess the performance of EDGE and RNA-seq in situations in which a complete reference 
transcriptome is unavailable, we simulated an incomplete reference that represented a sub-
sample of the existing mouse reference where each transcript contained 30% of contiguous 
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sequence selected randomly from mouse RefSeq genes. Using this simulated reference, we 
assigned genes to fastq reads from an EDGE and a RNA-seq library generated from mouse 
neonatal dermis, and calculated the rate of tag to gene assignment relative to the complete 
reference. Consistent with the results described above, EDGE and RNA-seq performed equally 
well—34% of EDGE tags and 32% of RNA-seq reads were correctly assigned to mouse genes in 
the incomplete reference, while 3.0% and 2.8%, respectively, were incorrectly assigned due to 
multiple locations in the full transcriptome (Table S4). 

In summary, both EDGE and RNA-seq provide similar estimates of transcript abundance for 
most genes, but the two approaches have different strengths and weaknesses, and EDGE is likely 
to perform better for short genes.  

Analyzing transcript abundance with a tag-based approach 

A principle advantage of EDGE over RNA-seq or related methods is the opportunity to study 
gene expression without a high-quality reference genome, by first identifying differentially 
expressed tags and then inferring tag-to-gene assignments with partial and/or comparative 
information (Figure 1B, see below). We used the existing mouse data to compare the previous 
“by-gene” approach to what would have been obtained with a “by-tag” approach (had a reference 
genome not been available).  

We applied the Poisson log-linear model to tag counts from EDGE library reads of mutant (n = 
6) and non-mutant (n = 5) neonatal dermis, ranked all unique tags by increasing FDR (or 
decreasing statistical significance for differential expression), and compared the results to the by-
gene approach. 

Overall, there was good agreement between the by-gene and the by-tag approaches. Among the 
genes that were previously identified as differentially expressed (< 5% FDR) in mouse neonatal 
dermis, 52% were detected as differentially expressed tags at less than 5% FDR and 90% were 
detected as differentially expressed tags at less than 10% FDR (data not shown). Thus, in the 
absence of a high-quality reference genome, an approach that relies on statistical analysis of 
EDGE tag frequencies is adequate for profiling differences in transcript abundance.  

Applying EDGE to a non-model organism: color variation in the cheetah 

As a direct test of EDGE profiling in a non-model organism, we carried out a pilot study to 
compare gene expression in areas of differently colored skin regions of a cheetah (Acinonyx 
jubatus). Periodic color patterns of black vs. yellow hair, such as spots on a cheetah or stripes on 
a tiger, represent a subject of longstanding interest to developmental and evolutionary biologists 
for which a suitable model organism does not exist.  

Two EDGE libaries were generated from cheetah skin, one from a black-pigmented region 
(hereafter referred to as “black spot”) and the other from an adjacent yellow-pigmented region 
(hereafter referred to as “yellow background”). Each library was sequenced on one lane of the 
Illumina Genome Analyzer IIx, generating an average of ~27 million EDGE tags per library. 
After removing poorly expressed tags, 194,225 unique tag sequences were used for tag to gene 
assignments (Table 3). 

We used two different approaches for tag to gene assignments, both of which are based on 
existing genome resources in the domestic cat (F. catus), which diverged from the cheetah 
approximately 4 – 6 million years ago, and therefore predicts >98% sequence identity between 
the two species for most regions of the genome, including non-protein coding transcribed regions 
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where the majority of EDGE tags are located. The two genomic resources include a 2x-coverage 
cat genome that has been partially annotated by comparison to other mammalian genomes and a 
partial cat transcriptome generated by 454 sequencing of ten different cat tissues, but that has not 
yet been integrated with the genome assembly.  

Approximately 21% of the unique cheetah tags could be assigned to genes by alignment to the 
cat genome, and an additional 24% could be assigned to genes by alignment to the cat 
transcriptome (Table 3). As with the mouse data, the distribution of unique cheetah EDGE tags is 
highly skewed towards those that are expressed at low levels (Figure S6); thus, of ~53 million 
tags from the two cheetah libraries, ~37 million could be assigned to genes. Overall, this 
provided information for 14,247 different genes, and illustrates how EDGE can capture the 
majority of variation in gene expression in the absence of a high-quality genome sequence.   

The Pearson correlation coefficient of gene counts between the two EDGE libraries was 0.945; 
thus, patterned control of color variation in cheetahs is not accompanied by significant 
differences in gene expression at a genome-wide level (Figure S6). Because the lack of 
biological replicates does not allow statistical evaluation of genome-wide expression differences, 
we instead examined tag counts for sets of known pigmentation genes based on whether they lie 
upstream or downstream of MC1R signaling.  

As described above, a Mc1r loss-of-function mutation in laboratory mice and many other 
mammals converts black hair to yellow hair in the entire animal by altering the expression of 
genes involved in the synthesis of eumelanin vs. pheomelanin, so-called pigment-type switching. 
Comparing black spot to yellow background RNA for cheetah skin (Table 4), we observed 
substantially higher tag counts in several genes that lie downstream of MC1R signaling and that 
promote switching from pheomelanin to eumelanin, SILV (+11 fold), TYR (+3.7 fold), DCT (+3 
fold) and TYRP1 (+1.6 fold). One gene that lies downstream of MC1R signaling exhibited small 
changes in expression whose direction was opposite to that predicted from laboratory mouse 
studies, SLC7A11 (+1.2 fold). By contrast, genes that encode upstream regulators of MC1R 
signaling exhibited relatively small changes in tag count, including ASIP (+1.5 fold), POMC 
(+1.6 fold), CORIN (-1.2 fold), and DEFB103 (-1.4 fold). 

The significance of the changes described is difficult to evaluate without replicate samples; 
however, we note that the direction of change for three of the upstream genes (ASIP, CORIN, 
and DEFB103) occurs in a direction opposite to that expected for an instructive role in pigment-
type switching. Furthermore, considered as a group (Figure 5), the distribution of Z scores for the 
downstream genes is significantly different from the entire dataset (p = 2.7e-6); by contrast, 
neither the range nor the values of individual Z scores for upstream genes stands out from the 
entire dataset (Table 4, Figure 5). Taken together, these results suggest that black spots in 
cheetahs are brought about by localized alterations downstream of MC1R signaling that engage 
known components of the pigment type-switching apparatus.  

Discussion 
Established and emerging technologies for ultra high-throughput sequencing are being 
increasingly applied to measure gene expression in a variety of basic science and translational 
settings. Like other so-called “digital gene expression” approaches (pioneered with serial 
analysis of gene expression, or SAGE), EDGE is based on a molecular biologic strategy in which 
the relative frequencies of unique cDNA tags are used to infer transcript abundance. However, 
unlike classical SAGE methods that utilize Sanger sequencing, EDGE relies on ultra high-
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throughput sequencing technology to generate millions of cDNA tags per RNA sample with 
increased time and cost savings. Compared to classical SAGE, EDGE provides substantially 
improved sensitivity for detecting rare transcripts and more robust measurements of transcript 
abundance across a broad range of expression levels, resulting in stronger statistical power to 
detect differentially expressed transcripts. In addition, the EDGE method is facilitated by high 
cleavage efficiency of EcoP15I, resulting in improved transcriptome coverage compared to other 
tag-sequencing approaches that rely on shorter tags generated by MmeI. Like RNA-seq, EDGE is 
extraordinarily sensitive, able to detect transcripts present at low levels or in a minority of cells 
in a heterogeneous tissue. Unlike RNA-seq, EDGE is not subject to transcript length bias; 
however, EDGE provides little or no information about transcript structure. An important 
application of EDGE as shown here is the ability to evaluate transcriptomic changes in non-
model organisms where a high-quality reference genome is not available. 

Applied to the skin of laboratory mice carrying a classical coat color mutation, EDGE detects 
expression from ~17,500 genes. Most of these are represented at very low levels, including 
components of the interferon response that are differentially expressed between Mc1r+/+ and 
Mc1re/e animals, and that were not detected in previous microarray analyses. Additional studies 
will be required to investigate the potential mechanisms and consequences of differences in 
innate immunity between Mc1r+/+ and Mc1re/e animals, but we speculate that differences in the 
chemistry of eumelanin and pheomelanin may have secondary effects on the ability of the innate 
immune system to respond to environmental pathogens or stress. For example, pheomelanin is 
associated with very different antioxidant levels than eumelanin (Chedekel et al. 1978; 
Samokhvalov et al. 2005), and it is interesting to note that melanin plays an important and 
established role in innate immunity in insects (Eleftherianos and Revenis 2011). 

Compared to RNA-seq, EDGE provides little information about transcript structure; however, 
the ability of EDGE to detect differential gene expression is not influenced by transcript length 
or potential size amplification bias during PCR amplification. Hence, EDGE is particularly 
attractive for experiments that require sensitive and robust measurements of relative transcript 
levels across the genome. Furthermore, EDGE achieves near saturation in gene detection with 6 
– 8 million sequence reads, making it possible to assay for gene expression differences in 
multiple biological replicates by employing a molecular barcoding strategy, thus substantially 
decreasing the cost of using EDGE while still providing significant advantages over microarrays. 

In a pilot study to investigate the effectiveness of EDGE in a non-model organism, we compared 
tag counts in skin of the cheetah taken from adjacent areas of different color. By taking 
advantage of the reduced complexity of sequence tags in EDGE relative to RNA-seq (and using 
a partially-annotated, low-coverage genome and an independently generated transcriptome 
assembly from the domestic cat), we assigned ~70% of cheetah EDGE tags to ~14,000 unique 
genes, which is comparable to a 78% tag-to-gene assignment rate in a parallel comparison to 
mouse EDGE libraries. Our results suggest that black spotting in cheetahs arises via patterned 
control of the same melanocyte-based pathways used in other mammals, but that the mechanism 
of patterning does not involve known components of pigment type-switching that lie upstream of 
the MC1R. Studies of additional cheetah samples will be required to confirm this suggestion, and 
can easily be extended to analogous questions in other patterned mammals such as tigers, 
leopards, and zebras.  

Continuing advances in the cost and scale of sequencing technology and increased sophistication 
of de novo assembly algorithms are likely to provide reference genome sequences for thousands 
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of mammalian species in the not too distant future (Grabherr et al. 2011; Li et al. 2010; Metzker 
2009; Robertson et al. 2010; Zerbino and Birney 2008). Like EDGE, this will further blur the 
distinction between model and non-model organisms, and provide opportunities to investigate 
many aspects of phenotypic variation that occur only in natural populations. 

Methods 
Mouse biological samples  

C57BL/6J - Mc1r+/+ and Mc1re/e animals were obtained from The Jackson Laboratory (Bar 
Harbor, MA, USA). Analysis of differential gene expression was based on RNA samples 
prepared from neonatal dermis (P3.5) and adult spleen (8 week-old). The neonatal dermis 
samples were obtained by first removing whole dorsal skin, and then separating the epidermal 
and dermal layers using fine forceps after a 12-hour incubation with 0.25% trypsin (Gibco) at 
4°C.  

For technical replicates, we created two pools of skin RNA from three Mc1r+/+ and three Mc1re/e 
animals, and prepared two EDGE libraries from each pool. For analysis of differential gene 
expression, tissue samples from individual animals were used to build independent EDGE 
libraries (21 libraries). Two neonate dermis samples (one Mc1r+/+ and one Mc1re/e) were also 
used to prepare RNA-seq libraries.  

Total RNA from adult skin was prepared using the RNeasy Fibrous Tissue Midi kit (Qiagen). 
Total RNA from neonate dermis and spleen was prepared using Trizol reagent (Invitrogen) 
followed by an additional purification using the RNeasy Mini kit (Qiagen). Both RNA isolation 
methods include an on-column DNaseI treatment.  

Cheetah biological samples 

Skin biopsies from cheetahs were obtained using 4-mm biopsy punches at the Cheetah 
Conservation Fund (Namibia) when animals were placed under general anesthesia during regular 
veterinary sessions. From a single individual, a pair of skin biopsies was obtained from a black-
haired region and an adjacent yellow-haired region and preserved in RNAlater (Ambion). 
Following the isolation of total RNA using the RNeasy Fibrous Tissue Mini kit (QIAGEN), 
EDGE libraries were constructed and each library was sequenced on one lane of an Illumina 
Genome Analyzer IIx.  

EDGE library preparation  

Between two to ten micrograms of total RNA was used for EDGE library preparation. Briefly, 
each RNA sample was used for double stranded cDNA synthesis using paramagnetic oligo-dT 
beads to capture polyadenylated RNA. Next, each cDNA molecule was “anchored” by NlaIII 
restriction digest that cleaves up to the 3’-most restriction site. cDNA fragments carrying the 
four base pair overhang (5’-CATG-3’) that remain attached to the paramagnetic beads were 
ligated to an Illumina adaptor carrying an EcoP15I recognition site (5’CAGCAG-3’). [EcoP15I 
is a Type III restriction endonuclease that cleaves 27 base pairs away from the 3’-end of its 
recognition site and requires two inversely oriented recognition sites for efficient cleavage 
(Meisel et al. 1992). However, we determined optimal reaction conditions that allow for efficient 
EcoP15I cleavage on linear DNA carrying a single recognition site, obtaining a ~6.4-fold 
improvement in cleavage efficiency compared to standard NEB reaction conditions (Figure S7).] 
Next, cDNA fragments were “tagged” by EcoP15I restriction digest, generating a 27 base pair 
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sequence tag with a two base pair overhang. After restriction digest, the supernatant is saved for 
the subsequent step and the paramagnetic beads were removed. Another Illumina adaptor 
carrying the sequencing primer was ligated to the sticky end and the 79 base pair ligation product 
was obtained by gel purification. Finally, a 15-cycle PCR enrichment step was performed to 
enrich for the desired library molecule and the PCR product was purified using the AMPure XP 
kit (Beckman Coulter). A detailed protocol is available in Supplementary Methods. Cluster 
generation and sequencing was performed on an Illumina Genome Analyzer II at Stanford 
University (Stanford, CA) or on an Illumina Genome Analyzer IIx at the HudsonAlpha Institute 
for Biotechnology (Huntsville, AL).  

RNA-seq library preparation 

RNA-seq libraries were prepared according to the method described by Mortazavi et al. (2008). 
Briefly, we started with two micrograms of total RNA and performed a double selection of 
polyadenylated RNA using oligo-dT magnetic beads. Next, The RNA was fragmented with RNA 
fragmentation buffer (200 mM Tris-acetate at pH 8.1, 500 mM potassium-acetate, 150 mM 
magnesium-acetate) and removed free-ions with a G-50 Sepharose spin column (USA 
Scientific). Fragmented mRNA was used as a template to synthesize single-stranded cDNA with 
SuperScript II reverse transcriptase and random hexamer primers in the presence of RNaseOUT 
(Invitrogen). Double-stranded cDNA was synthesized in a modified buffer of 500 mM Tris-HCl 
(pH 7.8), 50 mM MgCl2, and 10 mM DTT (Illumina). To prepare cDNA for sequencing, we 
performed end repair using T4 DNA polymerase and Klenow DNA polymerase (NEB), addition 
of an ‘A’ base to the 3’ ends of the cDNA using Klenow Fragment (NEB), followed by ligation 
of adaptors designed for the Illumina sequencing platform. The ligation product was purified by 
gel electrophoresis and purification of the 175 to 225 base pair region on a 1.5% NuSieve GTG 
agarose gel (Lonza) using the QIAquick Gel Extraction kit (QIAGEN). Finally, we enriched the 
library with 15 cycles of PCR amplification using Illumina sequencing primers. Cluster 
generation and 36 bp single-end sequencing was performed on an Illumina Genome Analyzer IIx 
at the HudsonAlpha Institute for Biotechnology (Huntsville, AL). 

Data processing and analysis - mouse 

For each EDGE library, EDGE tags were obtained by selecting sequence reads that passed the 
quality filter defined by the default Illumina pipeline and trimming off the adaptor sequence at 
the end of each read. Sequence reads which were not anchored by an NlaIII site i.e., ‘CATG’, 
were also removed, resulting in EDGE tags that were 26, 27 or 28 base pairs in length (26%, 
67% and 7% respectively).  

For the EDGE libraries, EDGE tags were uploaded onto DNAnexus (www.dnanexus.com) and 
aligned to the mm9 reference genome (NCBI Build 37) using default parameters. Next, the 
RNA-seq analysis tool was used to count sequence reads that aligned to the sense strand of 
mouse RefSeq transcripts. An EDGE tag is counted when its posterior probability of mapping to 
its match is 0.9 or greater, and the posterior probabilities contribute to the sum of the reads. For 
the RNA-seq libraries, the fastq file from each sequencing run was uploaded onto DNAnexus 
and analyzed in a similar fashion to the EDGE data. Since our RNA-seq protocol is non-
directional, reads that mapped to either orientation of the transcript were counted. 

Data processing and analysis - cheetah 

Cheetah EDGE libraries were processed (as described above) to obtain EDGE tags. We removed 
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poorly expressed tags, i.e., less than 5 tags in both libraries, and assigned cheetah EDGE tags to 
genes using two complementary strategies. The first strategy involved aligning EDGE tags, using 
ELAND (Illumina) and allowing up to two mismatches, to an Ensembl-annotated, 2x-coverage 
domestic cat genome assembly (felCat3, UCSC). EDGE tags were assigned to genes if they 
aligned uniquely to an Ensembl transcript. However, a substantial proportion of EDGE tags 
aligned to the region immediately downstream of many cat Ensembl genes because the majority 
of cat Ensembl genes are poorly annotated beyond its coding sequence. To increase our ability to 
align tags, we created “virtual 3’UTRs” by extending each Ensembl transcript in the 3’-direction 
by 1.8 kb (Figure S8). This “virtual 3’UTR” region contained a ~34-fold over-representation of 
EDGE tags compared to the background tag frequency observed in unannotated regions of the 
genome and corresponds to a 1% false discovery rate. The second strategy relied upon a de novo 
assembled transcriptome from domestic cat that was generated by the Genome Center at 
Washington University (unpublished). In brief, oligo-dT primed cDNA libraries were obtained 
from ten different cat tissues—cerebrum, hypothalamus, thalamus, retina, kidney, ovary, 
cochlea, vallate tongue, fetal body and fetal head—and each library was sequenced on a full 
single-end run on the GS FLX system (Roche). Raw sequence reads from each tissue were then 
assembled into contigs using Newbler (Roche), resulting in ten partially assembled cat 
transcriptomes. EDGE tags were aligned to the cat transcriptome, using ELAND and allowing up 
to two mismatches, and partial transcripts within the best stratum i.e., least number of 
mismatches, were used as a query to identify the most probable human ortholog within RefSeq 
(release 41) using discontiguous megablast. The hits returned by BLAST were filtered for 
matches with significant e-values smaller than 10E-20. Using this conservative threshold, EDGE 
tags were assigned to a RefSeq gene associated with the best BLAST match (i.e., lowest e-value) 
to a partial cat transcript.  

To integrate the tag to gene assignments from the two informatic approaches, we selected gene 
assignments based on the number of mismatches for each EDGE tag when it was aligned to the 
cat genome or transcriptome. Therefore, if a tag can be assigned with either approach, we 
selected the assignment with the lower number of mismatches. Also, if the number of 
mismatches was equal, the assignment to an Ensembl gene was chosen as the default. 

Identification of differentially expressed genes  

To analyze the gene expression profile in mouse tissues, we converted raw gene counts from 
each EDGE library to TPM and removed genes within each tissue type where the most highly 
expressed library did not exceed 2 TPM. We applied a Poisson log linear model described in 
Witten et al. (2010) to identify genes that were differentially expressed between mutant and wild 
type mouse samples. 

Quantitative RT-PCR  

Quantitative RT-PCR was performed on the same mouse neonate dermis RNA samples used to 
prepare EDGE libraries. Two micrograms of total RNA was first treated with DNaseI 
(Invitrogen) before reverse transcription with Superscript III (Invitrogen). cDNA samples were 
diluted five-fold and used for real-time PCR using the Lightcycler Faststart DNA Master Plus 
SYBR Green I kit (Roche). Primer sequences used for quantitative PCR were designed to span 
exon-intron boundaries and are available upon request. The p-values for differences in transcript 
levels were calculated using the Student’s t-test.  
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Data Access 
The data from this study have been submitted to the NCBI Sequence Read Archive 
(http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession number SRA027301. 
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Figure Legends 
Figure 1. Outline of EDGE methodology and informatic pipeline for tag identification. (A) 
Double stranded cDNA synthesis is performed using paramagnetic oligo-dT beads to capture 
polyadenylated RNA. Next, each cDNA molecule is “anchored” by NlaIII restriction cleavage 
that exposes the 3’-most ‘CATG’ site within the transcript. Following this, the EDGE_Rev 
adaptor (green) carrying an EcoP15I recognition site (5’CAGCAG-3’) is ligated, and the 
resulting molecule is “tagged” by EcoP15I restriction digest, generating a 27 bp sequence tag. 
The sticky end is ligated to the EDGE_For adaptor (blue). Finally, a 15-cycle PCR amplification 
using adaptor-specific primers (red half-arrows) is performed to add on the additional sequence 
required to complete the EDGE_For adaptor and to enrich for the desired final product. (B) 36 
bp pass-filter reads from the Illumina Genome Analyzer were processed to obtain EDGE tags. If 
a high quality reference transcriptome was available, e.g. mouse, EDGE tags were mapped to 
transcript sequence and uniquely aligned tags were counted for each gene. Otherwise, EDGE 
tags e.g. cheetah, were mapped to a de novo assembled reference transcriptome, e.g. cat, which 
acts as a scaffold to identify the orthologous gene in the organism in which the EDGE tags were 
derived. 

Figure 2. (A) Dynamic range of gene expression detected by EDGE. The TPM distribution (x-
axis) for genes detected by EDGE are plotted against number of genes (y-axis), and identifies 
poorly expressed genes below 2 TPM, moderately expressed genes with 2 to 10 TPM, highly 
expressed genes with 10 to 50 TPM and very highly expressed genes above 50 TPM. (B) Seven 
out of eight differentially expressed genes from EDGE showed significant differences when 
transcript abundance was measured by quantitative RT-PCR. a <2 TPM; b 2 to 10 TPM; c 10 to 
50 TPM; d >50 TPM in EDGE libraries. * p < 0.05; ** p < 0.001; *** p < 0.0001; ns = not 
significant. 

Figure 3. Application of EDGE to mouse tissues. (A) Using a Poisson log linear model, 327 and 
945 genes were identified as differentially expressed between Mc1r+/+ and Mc1re/e in (A) 
neonate dermis (FDR < 5%) and (B) spleen (FDR < 0.1%) respectively. Average gene counts 
from wild type (five libraries each for neonate dermis and spleen) and mutant (six for neonate 
dermis and five for spleen) EDGE libraries are plotted against each other on a log10 scale. 
Differentially expressed genes are plotted in red. (C) EDGE tags were detected for 17,535 unique 
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mouse genes in at least one tissue, and 1,589 genes were expressed in only a single tissue.  

Figure 4. Systematic biases in RNA-seq and EDGE. The relative frequency of RNA-seq reads 
and EDGE tags is (A) dependent on transcript length and (B) independent of NlaIII site 
frequency within transcripts. RefSeq genes were sorted by (A) transcript length and (B) 
frequency of NlaIII sites and placed into bins of 300 genes and 500 genes, respectively. The 
relative ratio of reads per million exonic RNA-seq reads (RPM) and tags per million exonic 
EDGE tags (TPM) within each bin is plotted (diamonds). Linear regression lines are plotted for 
each graph, and show a significant correlation in RPM/TPM ratio with transcript length (p < 1e-
4) and an insignificant relationship in RPM/TPM ratio with NlaIII site frequency (p = 0.51). (C) 
The ability of EDGE to detect differential gene expression is not dependent on transcript length. 
Genes that were detected by EDGE were sorted by transcript length and placed into bins of 300 
genes. The percentage of differentially expressed genes within each bin is plotted (diamonds). 
Linear regression lines are plotted for neonate dermis (p = 0.68) and spleen (p = 0.29). 

Figure 5. Expression of pigment-type switching genes in cheetah skin. Fold difference in gene 
expression between black spot and background was determined by EDGE. The relative fold 
difference for genes that encode components of pigment-type switching that lie upstream (blue) 
or downstream (red) of MC1R signaling is shown, as in Table 4.  
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Table 1. Mapping statistics of mouse EDGE and RNA-seq libraries. 

 EDGE (n = 21)a RNA-seq (n = 2)b 

Sequence reads1 (A) 13,669,354 13,403,260 
EDGE tags2 (B) 11,826,474 (B/A = 87%)  
Exonic tags (C) 9,187,952 (C/B = 78%) 8,070,026 (C/A = 60%)3 
Antisense exonic tags (D) 942,414 (D/B = 8%)  
Genes detected4 14,638 15,895 

a Median value of 21 EDGE libraries 
b Average value of 2 RNA-seq libraries 
1 36 bp sequence reads from the Illumina Genome Analyzer. 
2 26 – 28 bp pass-filter EDGE tags. 
3 Exonic reads for RNA-seq could come from sense or antisense transcripts since the RNA-seq  
protocol is non-directional. 
4 RefSeq genes detected by at least one EDGE tag or RNA-seq read. 
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Table 2. Fold difference in transcript abundance. 

 Fold difference in transcript abundance† 

 Tyrp1 Brca2 Smug1 Kit Slc7a11 Pmel Dct Rfng 

EDGEa -19.0 -1.9 -2.5 +3.4 +5.7 -2.0 -3.0 -2.8 
RNA-seqa -13.7 +1.1 -1.1 +1.6 +1.4 -2.4 -3.0 +1.1 
qRT-PCRb -14.3 -2.0 -1.7 +1.9 +2.4 -2.3 -2.7 +1.5 

† A positive or negative fold difference indicates that the gene was upregulated or downregulated  
in the neonatal dermis of Mc1re/e animals, respectively.  
a Compared TPM in EDGE (n = 5 for Mc1r+/+; n = 6 for Mc1re/e) and RPKM in RNA-seq (n = 1 
for Mc1r+/+ and Mc1re/e ). 
b Normalized to Actb expression (n = 5 for Mc1r+/+; n = 6 for Mc1re/e). 

 

 

 

 Cold Spring Harbor Laboratory Press on May 10, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Table 3. Identification of cheetah EDGE tags using two complementary informatic approaches. 

 Cheetah EDGE libraries (n = 2) 

Total number of EDGE tags 53,237,863 
EDGE tags assigned to gene 37,353,625 
Unique EDGE tags1 194,225 
Unique genes detected 14,247 

Aligned to Ensembl transcript in felCat3 42,021 
Used for assigning genes2 (A) 41,301 

Identified H. sapiens ortholog using match within F. catus transcriptome assembly 66,171 
Used for assigning genes3 (B) 46,033 

Positive gene ID from informatic pipeline (A + B) 87,334 

1 ≥ 5 tags per library. 
2 Gene assignments based on alignment with F. catus Ensembl transcript annotated on felCat3. 
3 Gene assignments based on alignment to a de novo assembled F. catus transcript. 
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Table 4. Expression of pigmentation genes in cheetah skin as determined by EDGE. 

Gene Black spot1  Yellow 
bckgnd.1  

Z score2 Exp. 
dir.1 

Position in MC1R signaling (function)1 

SILV 8.6 0.8 5.16 + Downstream (melanosomal protein)  
TYR 3.7 1.0 2.78 + Downstream (melanogenic enzyme) 
DCT 7.5 2.5 2.34 + Downstream (melanogenic enzyme) 
TYRP1 3.8 2.4 0.95 + Downstream (melanogenic enzyme) 
OCA2 2.2 2.3 -0.14 + Downstream (melanosomal protein) 
SLC7A11 46.1 37.8 0.38 - Downstream (cystine transporter) 
MITF 304.0 282.0 0.12 NA NA (developmental transcription factor) 
ASIP 0.6 0.4 0.79 - Upstream (Antagonist ligand of MC1R) 
POMC 1.9 1.2 0.97 + Upstream (Agonist ligand of MC1R) 
CORIN 39.9 47.7 -0.43 + Upstream (Agouti modifier) 
DEFB103 86.5 117.8 -0.71 + Upstream (Neutral ligand of MC1R) 

 
1 Expression levels are given as tags per million reads of an EDGE library prepared from RNA of a black spot or yellow background 
(bckgnd.) area of cheetah skin. The genes shown here were chosen based on their roles in pigment cell biology; six are well-
established melanocyte transcriptional targets downstream of MC1R signaling (April and Barsh 2006; Chintala et al. 2005; Kobayashi 
et al. 1995; Lamoreux et al. 1995; Le Pape et al. 2009), four encode secreted factors that act upstream, either as ligands or to modify 
ligands of the MC1R (Enshell-Seijffers et al. 2008; Barsh 2006; Kaelin et al. 2008), and one, MITF, encodes a transcription factor 
required for melanocyte development (Steingrímsson et al. 2006). The expected direction (Exp. dir.), increase (+) or decrease (-), for 
expression level change of each gene is given according to when pigment production switches from yellow pheomelanin to black 
euemelanin.  
2 Change in gene expression, log2 (black TPM/yellow bckgnd. TPM), is given as a Z score according to the distribution for 14,139 
genes with non-zero tag counts (mean = 0.02698, sd = 0.4434). 
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Erratum

Genome Research 21: 1905–1915 (2011)

Digital gene expression for non-model organisms
Lewis Z. Hong, Jun Li, Anne Schmidt-Küntzel, Wesley C. Warren, and Gregory S. Barsh

The right-hand side of Figure 1A depicts an EcoP15I 39 overhang rather than the correct 59 overhang. This error
does not affect the results presented in the paper. In addition, we note that Matsumura et al. (2010) have also
described a similar molecular biologic protocol in which EcoP15I is used to generate 26 bp tags from the 39 end
of cDNAs. This reference should have been cited in our original publication, and we apologize to Terauchi and
colleagues for this oversight.
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